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REGIMES OF A P O P U L A T I O N  DENSITY DESCRIBED 
BY A N O N L I N E A R  R E A C T I O N - D I F F U S I O N  MODEL 

N. A. Kudryashov and V. A. Nikitin U DC 532.546 

Certain stationary and nonstationary soluttons of  a reaction-dr/fusion model are obtained. Results of  a 

numerical  s imulat ion of  problems involving boundary condtt lons of  the f trst  kind are presented. A 

classification of regimes of change in population density is determined. 

Phys icomathemat ica l  S ta tement  of the Problem of Change in Populat ion Density.  Models descr ibed by a 

react ion-diffusion equation are  widely used in physics,  chemist ry ,  biology, and ecology when the evolution of a 

population dens i ty  is at issue [ I-4 ]. In the present  work we consider  a model descr ibed by an equation of the form 

On O n [ D O n  ] 
ot - ox L ox]  - '~'~ + b n 2 '  ( l )  

It is assumed that  D has the following dependence  on the concentrat ion n [5 ]: 

D = dn ~ . 

where for 6 = 0 we have the well-known l inear  case, i.e., the K o l m o g o r o v - P e t r o v s k i i - P i s k u n o v  equation [6-12 ]. 

We will consider  a boundary-va lue  problem for a population densi ty  over the segment  0 _<_< x _< l with 

constant boundary  condit ions of the form 

As the initial condit ion we take 

n(0, t ) = n  0, t>_0; 

n ( l , t ) = n  l, t_>0. 

n ( x , O ) = n  t ,  0 < x < l .  

We introduce a d imensionless  coordinate  and time by making the replacement  

? 
x ~ Ix ,  t ~ 3 t ,  

art 0 

after which Eq. (1), boundary  condit ions (2), and initial condit ions (3) take the form 

0u 0 ( 0u] 
0t 0x u3 
............ ,L~c) -- cru +f lu  2; 

u ( 0 ,  t) = I , t _ > 0 ;  

u l , t )  = N ,  t >_0; 

(2) 

(3) 

(4) 

(5) 
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Fig. 1. Evolution of the dependence of the population density on the 

coordinate for the first (a), second (b), and the third (c) regimes of behavior; 

the population density and the coordinate are given in dimensionless 

variables. 

u ( x , O ) = N ,  0 < x < l ,  (6) 

where 

N -  , a = a ,  fl = b ,  n = nou.  
n O nod 

Analysis of the Stationary Problem. Let us consider the stationary, equation 

d t du)  flu 2 dx u6 - -  7 x x  + a u - = O ,  i ; ' )  

which corresponds to the nonstationary equation (4) with boundary conditions (5). It is cvident that this equation 

has the trivial solution u = 0 under the corrcsponding boundary conditions. We will seek solutions of Eq. (7) 

differing from the trivial one. 

Equation (7) can be integrated once using the replaccmcnl 
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d / /  

dx - y (u).  (8) 

After integrat ion,  taking account of Eq. (8), we obtain 

( ~ )  ~ 2-, M 3-~  x (9) 
du 2 y2(u)  6 + 2 6 + 3 u = -- U -- + 2~" 

In the general  case integrat ion of relation (9) proves to be difficult. However, it is to be noticed that this relation 

coincides with the equation of one-dimensional  motion of a mass point with zero energy in the potential [13] 

V (u) 2a 2-a 213 u3-a  = - -  - - U  - -  + 

6 + 2  6 + 3  u ?A " 

Now we will introduce the new variables z and ~, connected with the variables u and  x by the relations 

u=  S-T-~ z, x=  6 + 2  ~' 

and the constant  c, connected with the constant  X by the relation 

Here it was assumed that the values of a and/5 were taken from the range of values for which the replace- 

ment is valid. When cr > 0 and fl > 0, Eq. (9) is written in the form 

(d~) 2 2-a 3-3 c 
= z - z + - ~ - .  (10) 

Z 

When 

6 + 2  
Z ~ Z  0 -- 

3+3 

(6 + 2) ~+2 
c = c  O -  ~+~,  u = u 0 = -  (11) 

(~ + 3) fl 

the potential 

3 - 3  2 - , 3  c 
V (z) = z - z 2,3 

Z 

and its first derivative vanish. 

For further  analysis ,  it is convenient  to replace one of the boundary  condit ions (at the right end) by the 

condition for the constant  Z(c), taking into account the corresponding sign of the derivative at the left end. In such 

a s ta tement  the problem corresponds to the Cauchy problem and is completely analogous to that of the motion of 

a point of mass 0.5 with zero energy in potential (1 1) with initial condit ions of the form 

z ( O ) = z  o -  ~ + 2  , d z ( o ) =  z o 2a ' 
(5 + 3 d~ z o 

/ 

and, moreover, the value of z o must lie in the "classically accessible region" of the potential g(z), which is achieved 

by the corresponding choice of the constant  c. 
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Now we consider cases where 2'(c) takes certain values. Let 6 = I, since the solution of Eq. (10) for 6 

1 is the same. Then  Eq. (10) for 6 = 1 will be written in the form 

[d_~] 2 2 c 
= z - - z  + - ~ ' ,  

Z 

while the constants  zo, uo, co, and 2'o take the following values: 

3 27 ~ 1 Is[ 4 
Z0 : - - ,  r-'O : - - ,  U0 = , Z 0  = - -  3 " 

4 256 6 I~l 

Several cases are possible in the analysis. We consider each of them separately. 
First we assume that the constants  a and fl are positive. 

1) When c < - c  o there is no solution. 

2) At c ,= - c o  there is a single solution coinciding with the trivial one u ~ let  I~  Ifll. 

3) When - c o  < c < 0 a periodic solution can exist in the region Zl -< z _< z2,  where Zl and  z2 are the roots 

of the equation 

2 (12) 
Z - -  z + = 0 ,  0 < Zl < Z 2 .  

z 

The period of the solution along the x axis is determined from the formula 

T x = 2 d z  

Here the boundary  conditions at the left end should be chosen from the region (zl; z2). 

4) At c -- 0 Eq. (9) can be integrated,  and the solution obtained has the form 

u (x) = ~ cos , (13) 

where xo is a constant  determined from the boundary  condition at the left end. 

We will consider the stability of solution (13). Let us take a small perturbation and  expand it in a Fourier 

series in time and space: 

aU (X, t) = E (~Uk,to eikx-it~ 
k,to 

Substi tut ing the perturbed solution into Eq. (4) and making use of the fact that a nonper lurbed function is a solution 

of (7), we obtain that harmonics for which Ifll < k will be damped. 

5) When c > 0, a solution of the problem exists if z < z3, where z 3 is the positive root of Eq. (12). At z = 

z 3, the solution can have a turning point. The boundary  condition at the left end is chosen from the region 

z < _ z  3. 

Now we consider cases where the constants  a and fl are negative. Equation (10) will be written in the form 

/ J z i  2 2 c = z  - z + - ~ .  (14) 
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1) When c > co, a solution exists if the boundary  condition at the left end is arbi t rar i ly  prescribed and  

z > 0 .  

2) At c = co a solution exists if the boundary  condition at the left end is arbi t rar i ly  prescribed and  z > 0. 

The potential 

2 c 
v ( z )  = z - z 

2 
z 

has a second-order  zero at the point z = z 0, and Eq. (14) will be written as 

dz) 2 
= (z - Zo) 2 p (z) ,  

where p(z) has no singularities at z = z 0. There is the unstable solution u = l a l / I / ~ I .  

3) When 0 < c < c O , no solution exists if z I < z < z 2, where z I and z 2 are the roots of the equation 

2 c ( I S )  
z - -  z 2 - - 0 ,  0 < Zl < z 2. 

z 

At the points z I and  z2 the solution can have turn ing  points. The boundary  condit ion at the left end is chosen 

outside the region (zl; z2). 

4) At c = 0 Eq. (9) can be integrated,  and  the solution takes the form 

u (x) - ]1~1 cb2 (16) 

where the constant  x0 is determined from the boundary  condition at the left end. 

5) When c < 0, the region z 3 _< z is accessible for the solution, where z3 is the positive root of Eq. (15). At 

the point z = z 3 the solution can have a turning point. The boundary  condition at the left end should not be situated 

in the region z _> z 3. 

Solution of the Stat ionary Equation in the Case 6 = - 1. This  solution is of purely theoretical interest.  

For 6 = - I, under  the square root sign of Eq. (9) we can factor a perfect square, and this equation takes 

the form 

du - + ( a u  2 - b u )  

dx - 

where 

2 

q 1,81 1/31 

Here we assume thai a < 0 and j~ < 0. Integrat ing this equation, we obtain the solution 

u (x) = 

. . . . . .  L~ l 
Vl~- l -  1/31 + c• + 

I~1 /x - x0)~ ~ ' 

JJ 
where x o is the integration constant. This solution corresponds to a stationary shock wave. 

Certain Analyt ical  Solutions of the Nonstat ionary Problem, We wi l l  consider the problem of the 

cigenfunclions and eigenvalues for lhc operator 
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.(.u) L (u) ~ u a = ~ - / 3 , ,  z ' 

that corresponds to the boundary-value problem (7). Here the constant a plays the part of the eigenvalue and the 

boundary  conditions are taken in accordance with the initial problem (5). The solution u depends parametrically 

o n  6 .  

Let the solution of Eq. (7) be represented in the form 

u (x,  g (t)) = g (t) / ( x ) ,  

where f (x)  is a function independent  of a (as the function f (x)  we can take functions corresponding to the solutions 

(13) and (16)) and g(t) depends on time. Then Eq. (4) will be written as 

dg  (t) = (g (t) - 6 )  g (t) . 
dt 

The solution of this equation has the form 

ct 

g( t )  = 1 + e x p ( a ( t -  to) ) '  

where to is the integration constanl.  The solution of the nonstat ionary equation is obtained in the form 

6 / ( x )  
u ( x , t )  = 1 + e x p ( a ( t -  to) )" 

Taking into account stationary solutions of Ihe type of (I3) and (I6) ,  we have 

u (x, t) = 1 + exp ~ (t - to) ) ~ ch2 ~ ' 

4 / 
u (x, t) = 1 + exp (a (t tO) ) _ ~ COS 

It should be noted that these solutions exist only for the corresponding assignment of the initial condition. 

Method of  Mathematical Simulation. Numerical solution of the stationary problem (7) was performed under 

an initial condition of the form u(0) = 1 with a prescribed value for the constant • that replaced the second boundary 

condition. The equation was solved by the R u n g e - K u t t a  method of the fourth order of accuracy. 

Nonstat ionary problem (4)-(6) was solved numerically with the use of the following implicit difference 

scheme I14 I: 

h 2 r 2 

n + l  n + l  U/ or / ~ j - I  n + l  n + l  

(ui+ l +u: )- (u: - u:_l) - 
2 

n + l  . n + l  2 
- a u /  + f l ( u j  ) , 0 < j <  J ,  0- '5  n ,  

where u~ ~ is :he population densi:y a! the j-th point on the a-th tempera1 layer. The scheme is absolutely stable, 

and therefore the values of the time r and space h intervals were selected on the basis of the best approximation. 

At each time step we solved the system by the iteralive process 
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so0 l/ / / s.. ) 
r h 2 2 (uj+ 1 uj) 2 (uj Uj_l) ataj + IOUjUj , 

s where uj is the value of the des i red  function on the next temporal  layer  at the s- th i terat ion;  as a zero i tera t ion we 

took the value of the function on the previous temporal  layer  u~ Id. The  i tera t ions  were calculated by the pivot [ ]e thod  

115, 16 ]. The  initial and  bounda ry  condi t ions were prescr ibed in the forra 

t t  

u 0 = 0  , 0 < n ;  

t l  
uj = N ,  0 < n ;  

0 
uj = N ,  O < j < J .  

The calculat ion was carr ied  out in the following order .  First  we prescr ibed the bounda ry  condi t ion at the left end 

(u(0) = 1), the value of the constant  X, and  the sign of the derivative at the point x = 0, and  then we solved Eq. 

(9) by the R u n g e - K u t t a  [ ]e thod.  The  value of the function at the right end u de t e rmined  in this way was taken 

as the second b o u n d a r y  condi t ion and  init ial  da ta  for the evolution proble[]  (4 ) - (6) ,  which then was solved. In all 

the cases  for s impl ic i ty  of calculat ions we took ~ = 1. The  calculat ions were per formed for d i f ferent  regimes  specif ied 

by the values of a and  fl and  the value of the constant  Z. In all calculat ions with s ta t ionary  b o u n d a r y  condi t ions  

the solut ion of the evolution problem approached  the solution of the  s t a t ionary  proble[]  (9) ob ta ined  by  the 

R u n g e -  Kutta  [ ]e thod.  

Resul ts  of  Numer ica l  Simulat ion.  Resul ts  obta ined  by numerical  s i [ ]u la t ion  of the processes  of evolution 

of the populat ion dens i ty  a re  given in Fig. 1. Each graph d isp lays  several  d is t r ibut ions  of the populat ion dens i ty  

over the coordina te  at equal t ime intervals.  It is evident  how the initial  d is t r ibut ion  of the populat ion dens i ty  goes 

over into a s t a t ionary  dis t r ibut ion.  On each graph the value of a ,  fl, and  X are  indica ted  for which the calculat ion 

was per formed as well as the t i []e t up to which the evolution proble[]  (4)-(6)  was calculated and the t i [ ]e  intervals  

dt at which the given graphs  were obta ined.  

It is es tab l i shed  that  a solution has one of four character is t ic  regi [ ]es  of behavior.  

The  f i r s t r e g i [] e (Fig. l a ) .  The  solution a t ta ins  a s ta t ionary  dis t r ibut ion;  the value at each point 

does not exceed the maxi [ ]u [ ]  value at the ends  and  is not smal ler  than the [ ] in i [ ]um one. In this case the spat ia l  

derivative has the sa[]e  sign everywhere.  This  regi[]e  can be real ized in any of the cases in which a solution exists .  

The  s e c o n d r e g i • e (Fig. lb ) .  The  solution a t ta ins  a s ta t ionary  d is t r ibut ion  that  exceeds  the 

maxi [ ]u[ ]  one from the bounda ry  condi t ions ,  i.e., protrusion of the dens i ty  above the bounda ry  values is observed.  

This  regime can be real ized when a > 0 and /3  > 0, if ;t > -;(0,  and  when a < 0 and fl < 0, if 0 < Z < ;t0. 

The  t h i r d r e g i m e (Fig. lc) .  The  solution a t ta ins  a s ta t ionary  dis t r ibut ion that  at cer tain points is 

smal ler  than the [ ] in i [ ]um value at the boundary ,  i.e., a "dip" in the dens i ty  below the bounda ry  values occurs. 

This  regime can be real ized when a > 0,/3 > 0, and  - ; to  < ;t < 0 and when a < 0,/3 < 0, and  ;to < ;t. 

The  f o  u r t h r e g i  m e. The  solution a t ta ins  a constant .  This  regime is real ized w h e n c t  > 0 , [ 3  > 0, 

and ;t = -Z0 and when a < 0,/3 < 0, and ;t = ;to under  the cor responding  boundary  condit ions.  

N O T A T I O N  

n, populat ion densi ty ;  a, b, d, a, [3, and  N, constant  coefficients; D, diffusion coefficient;  t, time; x, 

coordinate;  6, positive quant i ty  character iz ing the dependence  of the diffusion coefficient on the population dens i ty ;  

;t and c, in tegrat ion constants ;  u and z, d imens ionless  population densi t ies ;  s ~, d imens ionless  coordinate ;  uT, value 

of the populat ion dens i ty  at the l - th  point on the n-th temporal layer;  r, t ime step of the grid; h, spat ial  s tep of the 

grid; u~, value of the population dens i ty  on the next temporal layer  at the s-lh i terat ion,  
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