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REGIMES OF A POPULATION DENSITY DESCRIBED
BY A NONLINEAR REACTION-DIFFUSION MODEL

N. A. Kudryashov and V. A. Nikitin UDC 5§32.546

Certain stationary and nonstationary solutions of a reaction-diffusion model are obtained. Results of a
numerical simulation of problems involving boundary conditions of the first kind are presented. A
classification of regimes of change in population density is determined.

Physicomathematical Statement of the Problem of Change in Population Density. Models described by a
reaction-diffusion equation are widely used in physics, chemistry, biology, and ecology when the evolution of a
population density is at issue [1-4]. In the present work we consider a mode! described by an equation of the form

on _on|pon| 2 (1)
at ~ ox [D ax] an + bn-,

It is assumed that D has the following dependence on the concentration n [5}:

D=dnd.

where for & = 0 we have the well-known linear case, i.e., the Kolmogorov— Petrovskii— Piskunov equation [6-12].
We will consider a boundary-value problem for a population density over the segment 0 < x < [ with
constant boundary conditions of the form

n@0,)=ny, tz0;

(2)
n,)=n;, t20.
As the initial condition we take
n(x,0=n, 0<x<l{, 3
We introduce a dimensionless coordinate and time by making the replacement
x =[x, 19—1251,
ang
after which Eq. (1), boundary conditions (2), and initial conditions (3) take the form
du _ 9 f 80uy _ Z, (4)
ot~ dx ( 4,7,‘() au +ﬂu ’ ‘
w0, n=1, tz0; ,
(5

u(l,n=N, 120,
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Fig. 1. Evolution of the dependence of the population density on the
coordinate for the first (a), second (b}, and the third (c) regimes of behavior;
the population density and the coordinate are given in dimensionless
variables.
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where

N=—, a= —(;‘;a, /32 TTb’ n=nyu.
no n() ’10 d

Analysis of the Stationary Problem. Let us consider the stationary equation

d ( 8du — 8L = 7
dx(u dx)+au pu =0, (7

which corresponds to the nonstationary cquation (4) with boundary conditions (5). 1t is evident that this equation
has the trivial solution u = Q under the corresponding boundary conditions. We will seck solutions of Eq. ()
differing from the trivial onc.

Equation (7) can be integrated once using the replacement
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&y w. (8)

After integration, taking account of Eq. (8), we obtain

2
O T AT 9)
dx d+2 d+3 u

In the general casc integration of relation (9) proves to be difficult. However, it is 1o be noticed that this relation
coincides with the equation of one-dimensional motion of 3 mass point with zero energy in the potential [13]

V(u):_[ 2a u2"6~iu3"6+—l—].

5+ 2 5+3 W2

Now we will introduce the new variables z and &, connected with the variables u and x by the relations

P =V ) () )

and the constant ¢, connected with the constant y by the relation

a

B

u =

e=2 () ()

Here it was assumed that the values of @ and 8 were taken from the range of values for which the replace-
ment is valid. When a > 0 and § > 0, Eq. (9) is written in the form

2
Q = 22-d - 23—(5 + -%,— (10)
d€ z
When
3+2
d+2 (4 +2) a .
z=2zy= ., C=¢g = , U= uy=— (1
6+3 @ + 3’3 ° 8
the potential
V(z) = 23—-6 _ 22—6 _ —;:g

z

and its first derivative vanish.

For further analysis, it is convenient to replace one of the boundary conditions (at the right end) by the
condition for the constant x(c), taking into account the corresponding sign of the derivative at the left end. In such
a statement the problem corresponds to the Cauchy problem and is completely analogous to that of the motion of
a point of mass 0.5 with zcro energy in potential (11) with initial conditions of the form

dz 2-6 3-4 :
) d_(O)ZV(Zo -2y “’%).

0 +2
07 38+3

a

z(0) =z B

3 Zg

and, morecover, the value of zg must lic in the "classically accessible region” of the potential V(z), which is achieved
by the corresponding choice of the constant c.
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Now we consider cases where y(c) takes certain values. Let 8 = 1, since the solution of Eq. (10) for ¢
# 1 is the same. Then Eq. (10} for 6 = 1 will be written in the form

2
dz =z—z2+i2—,
dé z

while the constants zy, ug, cg, and yo take the following values:

4
3 27 a 1 |a
==, cg=—"", Up= _‘on_l_l?
4 256 B 6 |81

Several cases are possible in the analysis. We consider each of them separately.
First we assume that the constants « and f§ are positive.

1) When ¢ < —c¢g there is no solution.

2) At c = —cq there is a single solution coinciding with the trivial one u = 1al/18].

3) When —cg < ¢ < 0 a periodic solution can exist in the region z; < z < 2z, where z; and z; are the roots
of the equation

z—zz+—%=0, 0<z <z (12)
z

The period of the solution along the x axis is determined from the formula

e Vi) ]

Here the boundary conditions at the left end should be chosen from the region (zy; z3).
4) At ¢ =0 Eq. (9) can be integrated, and the solution obtained has the form

u(x) = %% cos” (\/ (J_/ZL) : —2x0] , (13

where xg is a constant determined from the boundary condition at the left end.

We will consider the stability of solution (13). Let us take a small perturbation and expand it in a Fourier
series in time and space:

ikx—iwt
du(x, )= 3 duy e,
k.w

Substituting the perturbed solution into Eq. (4) and making use of the fact that a nonperturbed function is a solution
of (7), we obtain that harmonics for which 181 < k will be damped.

5) When ¢ > 0, a solution of the problem exists if z < z3, where z3 is the positive root of Eq. (12). At z =

z3, the solution can have a turning point. The boundary condition at the left end is chosen from the region
zZ < z3.

Now we consider cases where the constants a and 8 are negative. Equation (10) will be written in the form

\ 2
e R (14)
dE
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1) When ¢ > cg, a solution exists if the boundary condition at the left end is arbitrarily prescribed and
2> 0.

2) At c = cg a solution exists if the boundary condition at the left end is arbitrarily prescribed and z > 0.
The potential

<
2
z

V() = z2 -z -
has a second-order zero at the point z = zg, and Eq. (14) will be written as

2
(j—g) = (-2 p ().

where p(z) has no singularities at z = zy. There is the unstable solution u = lal/18].
3) When 0 < ¢ < ¢g, no solution exists if z; < z < z3, where z; and z; are the roots of the equation

z—~22——c-2—=0, 0<z <z. (15)
z

At the points z; and z; the solution can have turning points. The boundary condition at the left end is chosen
outside the region (z); z9).
4) At ¢ =0 Eq. (9) can be integrated, and the solution takes the form

u(x) = 431;: ch? (V(—Igl—) x-zxo] , (16)

where the constant xg is determined from the boundary condition at the left end.

5) When ¢ < 0, the region z3 < z is accessible for the solution, where z3 is the positive root of Eq. (15). At
the point z = z3 the solution can have a turning point. The boundary condition at the left end should not be situated
in the region z = zj.

Solution of the Stationary Equation in the Case é = —1. This solution is of purely theoretical interest.
For ¢ = —1, under the square root sign of Eq. (9) we can factor a perfect square, and this equation takes
the form
du

2
E—i—(au — bu),

where

2

_ _ [24 _ (@4
a= , b= R = .
! VisT sl

Here we assume that @ < 0 and S < 0. Integrating this equation, we obtain the solution

la]

Yari [[m + exp [z lal - x)

u(x) =
v Bl

wherc xg is the integration constant. This solution corresponds to a stationary shock wave.
Certain Analytical Solutions of the Nonstationary Problem. We will consider the problem of the
cigenfunctions and cigenvalues for the operator
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L(u)=3d; (ué%) —,Buz,

that corresponds to the boundary-value problem (7). Here the constant a plays the part of the eigenvalue and the
boundary conditions are taken in accordance with the initial problem (5). The solution « depends parametrically
on a.

Let the solution of Eq. (7) be represented in the form

u(x, g() =g /f(x),

where f(x) is a function independent of a (as the function f(x) we can take functions corresponding to the solutions
(13) and (16)) and g(1) depends on time. Then Eq. (4) will be written as

0~ gy -arg.

The solution of this equation has the form

E0 =TT expalt-tg)

where I is the integration constant. The solution of the nonstationary equation is obtained in the form

i af (x)
u(x, ) =7 +exp(a(t- 1)’

Taking into account stationary solutions of the type of (13} and (16}, we have

a 4 5 1Bl x - xg
4D = T explai—1) 3B [\/(T) 2 ]

a 4 1B1} x—xq
“ED =T exp @ = 1g) 38 (\/(T) 2 ]

[t should be noted that these solutions exist only for the corresponding assignment of the initial condition.

Method of Mathematical Simulation. Numerical solution of the stationary problem (7) was performed under
an initial condition of the form u(0) = | with a prescribed value for the constant y that replaced the second boundary
condition. The equation was solved by the Runge—Kutta method of the fourth order of accuracy.

Nonstationary problem (4)-(6) was solved numerically with the use of the following implicit difference
scheme (14 ]:

n+1 n | n+l n+1\4 n+l n+1\d
u - Wiy U n+1 n+l u Uj_y n+ n+l
i J == j j Wi el - i j W=t
1 h 2 2
n+l n+1.2 ,
- au; +/3(uj )y, O<j<J, 0=<n,

where “1" is the population density at the j-th point on the n-th temporal layer. The scheme is absolutely stable,
and therefore the values of the umc 1 and space A intervals were selected on the basis of the best approximation.
At ecach time stcp we solved the system by the iterative process
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where u,s- is the value of the desired function on the next temporal layer at the s-th iteration; as a zero iteration we
took the value of the function on the previous temporal layer u}"d. The iterations were calculated by the pivot method
(15, 16]. The initial and boundary conditions were prescribed in the forra

u0=0, OSFI;

S
Il
2
(=
A
a

The calculation was carried out in the following order. First we prescribed the boundary condition at the left end
(u(0) = 1), the value of the constant y, and the sign of the derivative at the point x = 0, and then we solved Eq.
(9 by the Runge—Kutta method. The value of the function at the right end u determined in this way was taken
as the second boundary condition and initial data for the evolution problem (4)-(6), which then was solved. In all
the cases for simplicity of calculations we took & = 1. The calculations were performed for different regimes specified
by the values of a and 8 and the value of the constant x. In all calculations with stationary boundary conditions
the solution of the evolution problem approached the solution of the stationary problem (9) obtained by the
Runge—Kutta method.

Results of Numerical Simulation. Results obtained by numerical simulation of the processes of evolution
of the population density are given in Fig. 1. Each graph displays several distributions of the population density
over the coordinate at equal time intervals. It is evident how the initial distribution of the population density goes
over into a stationary distribution. On each graph the value of a, B, and y are indicated for which the calculation
was performed as well as the time f up to which the evolution problem (4)-(6) was calculated and the time intervals
dt at which the given graphs were obtained.

It is established that a solution has one of four characteristic regimes of behavior.

The first regime (Fig. 1a). The solution attains a stationary distribution; the value at each point
does not exceed the maximum value at the ends and is not smaller than the minimum one. In this case the spatial
derivative has the same sign everywhere. This regime can be realized in any of the cases in which a solution exists.

The second regime (Fig. 1b). The solution attains a stationary distribution that exceeds the
maximum one from the boundary conditions, i.e., protrusion of the density above the boundary values is observed.
This regime can be realized when @ > 0and § > 0, if y > —xg, and whena < 0and 8 < 0, if 0 <y < xo.

The third regime (Fig. Ic). The solution attains a stationary distribution that at certain points is
smaller than the minimum value at the boundary, i.e., a "dip" in the density below the boundary values occurs.
This regime can be realized whena > 0,8 >0, and —yg <y < 0and whena < 0,8 < 0, and xo < x.

The fourth regime. The solution attains a constant. This regime is realized when a« > 0,8 > 0,
and y = —xg and when a < 0, 8 < 0, and y = x¢ under the corresponding boundary conditions.

NOTATION

n, population density; a, b, d, a, 8, and N, constant cocfficients; D, diffusion coefficient; ¢, time; x,
coordinate; &, positive quantity characterizing the dependence of the diffusion cocfficient on the population density;
x and ¢, integration constants; « and z, dimensionless population densities; &, dimensionless coordinate; u]'»', value
of the population density at the j-th point on the n-th temporal layer; 1, time step of the grid; A, spatial step of the
grid; uj value of the population density on the next temporal layer at the s-th iteration.
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